16

Lessons

50h

Duration

English

Language

OBJECTIVEs:

Course features:

PRE-REQUISITES:

Learning Path

  • Data Types
  • Variables And Other Basic Elements Control Statements
  • Date and Time in Python
  • Arrays and Strings
  • Lists and Tuples
  • Dictionaries
  • Series
  • DataFrame
  • Panel
  • Basic Functionality
  • NumPy
  • Pandas
  • SciPy
  • Visualization with Matplotlib
  • Data Wrangling
  • Web Scrapping
  • Exploratory Data Analysis
  • Feature
    Engineering 
  • Feature Selection
  • Project Case Studies: Patient Demographic Analysis
  • Healthcare Analysis
  • Function Application
  • Reindexing Python
  • Iteration
  • Sorting
  • Working with Text Data Options & Customization
  • Indexing & Selecting Data Statistical Functions
  • Window Functions
  • Date Functionality
  • Time delta
  • Categorical Data
  • Visualization Python Pandas – IO Tools
  • Supervised and UnSupervised Learning
  • Types of Supervised Algorithms
  • Semi-supervised
  • Reinforcement Train
  • Test
  • Validation Split
  • Semi-supervised
  • Reinforcement Train
  • Test
  • Validation Split
  • R square
  • Introduction to Scikit learn
  • Training methodology
  • Hands on linear regression
  • Ridge Regression
  • Logistics regression
  • Precision Recall ROC curve
  • F-Score
  • Classification: Decision Tree
  • Cross Validation Bias vs Variance
  • Ensemble approach Bagging
  • Boosting Random Forest Variable Importance
  • K-Means clustering
  • Hierarchical Clustering
  • Recommender System and Association
  • Project case studies: Classification of drugs, prediction of heart disease, Association of Ingredients in Drug, Liver Disease Prediction
  • Introduction to SQL, MYSQL installation and setup
  • Entity relationship and database normalization
  • Working with database and tables
  • Working with operators and constraints
  • Functions and Views
  • Stored procedures and Triggers