13

Lessons

40h

Duration

English

Language

Course features:

Learning Path

  • Introduction of Data science and its application in day-today life.
  • Course overview and description.
  • Introduction of python programming language.
  • Installation of Anaconda Distribution and other python
    IDE python objects, number & booleans, Strings.
  • Container objects, mutability of objects.
  • Operators – Arithmetic, Bitwise, comparison and assignment operators, operators precedence and associativity
  • Conditions (If else,if-elif-else), loops (While, for).
  • Break and continue statement and range function.
  • String object basics
  • String methods
  • Splitting and joining strings
  • String format functions
  • List object basics list methods
  • List as stack and queues
  • List comprehensions
  • Tuples, sets, dictionary object. Basics, dictionary, object
    methods, dictionary view objects
  • Functions basics, parameter passing, Iterators. Generator functions.
  • Lambda functions
  • Map, reduce, filter functions
  • OOPS basic concepts
  • Creating classes and objects inheritance
  • Multiple inheritance
  • Working with files
  • Reading and writing files
  • Buffered read and write
  • Other file methods
  • Using standard module
  • Creating new modules
  • Exceptions handling with try-except
  • Creating, inserting and retrieving table
  • Updating and deleting the data
  • Series
  • DataFrame
  • Panel
  • Basic functionality
  • Reindexing Python
  • Iteration
  • Sorting
  • Working with text data options & customization
  • Indexing & selecting
  • Data statistical functions
  • Window functions
  • Date functionality
  • Time delta
  • Categorical data
  • Visualization Python Pandas – IO Tools
  • ND array object
  • Data types
  • Array attributes
  • Array creation routines
  • Array from existing data array from numerical ranges
  • Indexing & slicing
  • Advanced indexing
  • Broadcasting
  • Iterating over array
  • Array manipulation
  • Binary operators
  • String functions
  • Mathematical functions
  • Arithmetic operations
  • Statistical functions
  • Sort, search & counting functions
  • Byte swapping
  • Copies & views
  • Matrix library
  • Linear algebra
  • Feature engineering and selection
  • Building tuning and deploying models
  • Analyzing bike sharing trends
  • Analyzing movie reviews sentiment
  • Customer segmentation and effective cross selling
  • Analyzing wine types and quality
  • Analyzing music trends and recommendations
  • Forecasting stock and commodity prices
  • Descriptive statistics
  • Sample vs population statistics. Random variables.
  • Probability distribution function. Expected value.
  • Binomial distribution
  • Normal distribution z-score
  • Central limit theorem
  • Hypothesis testing
  • Z-Stats vs T-stats
  • Type 1 type 2 error
  • Confidence interval
  • Chi Square test
  • ANOVA test
  • F-stats
  • Introduction
  • Supervised, unsupervised, semi-supervised, reinforcement, train, test, validation split
  • Performance overfitting, underfitting OLS
  • Linear regression assumption
  • R square adjusted
  • R square
  • Introduction to scikit learn
  • Training methodology
  • Hands on linear regression
  • Ridge regression
  • Logistics regression
  • Precision recall ROC curve
  • F-Score
  • Decision tree
  • Cross validation. Bias vs Variance.
  • Ensemble approach. Bagging. Boosting random forest variable importance.